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Abstract. We study the classical motion in bidimensional polygonal billiards on the sphere. In
particular, we investigate the dynamics in tiling and generic rational and irrational equilateral
triangles. Unlike the plane or the negative curvature cases we obtain a complex but regular
dynamics.

1. Introduction

In this work we consider the classical motion of a point particle inside a two-dimensional
polygonal billiard on a surface with constant positive curvature. Flat billiards and billiards
on a surface with negative curvature have been extensively studied. It is well known that the
dynamics in flat polygonal billiards depends on whether the inner angles of the polygon are
rational multiples ofπ [1–3]. If this is the case these systems are referred to as ‘pseudo-
integrable’ since they possess two constants of motion and the flow is restricted to a two-
dimensional invariant surface. If at least one of the vertex angles is an irrational multiple ofπ

the polygon is generically ergodic [4]. On the other hand, the interest in studying polygonal
billiards on a surface with negative curvature is that the classical motion is simple and as
chaotic as possible since the flow on these surfaces is hyperbolic [5].

By investigating the dynamics on a spherical surface we explore the other limit: instead
of having more chaoticity, more focusing is expected with respect to the planar case as a
consequence of the positive curvature. The motivation for studying these systems is to
see how this focusing mechanism together with the compactness of the surface affects the
classical motion. In particular, we will investigate the condition for integrability and stress the
importance of tiling billiards. In the general case we will explore numerically the phase space
portrait of curved polygonal billiards (i.e. periodic orbits, invariant surfaces, etc), and try to
explain these numerical observations in a rather intuitive way. Another important observation
is that the direct and the dual billiard problems become projective-dual on the sphere [6] and,
hence, the problem we are considering is isomorphic to the polygonal dual billiard problem.

The paper is organized as follows. In section 2 we present the formalism and introduce the
dual billiard problem. In section 3 we briefly discuss the case of billiards enclosed by meridians
and parallels and then concentrate on the study of polygonal billiards, i.e. billiards whose
boundary consists entirely of arcs of geodesics. In particular, we will focus on equilateral
triangles. We will first study tiling triangles in section 3.1 and then generic triangles in
section 3.2. For this we use the entry–exit map and finally make a comparison of small
curved triangles with triangles on the plane. Conclusions are presented in section 4.
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Figure 1. (a) Three intersecting geodesics enclosing a
triangular billiard centred at the north pole. In (b) the
shadowed area is the corresponding phase space on the
dual space to the geodesics.

2. The model

The motion on the sphere will be described in terms of the spherical coordinates: the polar
angleα and the azimuthal angleβ. The coordinate curvesα = const andβ = const form an
orthogonal net. The line element for a sphere of radiusR has the usual form:

ds2 = R2 dα2 +R2 sin2 α dβ2 (1)

and the curvature is 1/R2.
The geodesics are the great circles of the sphere and can be viewed as its intersection with

a plane passing through the origin. They can be labelled by the coordinates(θG, φG) of the
unit vector normal to this plane and their equation reads:

tanα = − cotθG

cos(β − φG) . (2)

Note thatα andβ are coordinates on the physical sphere where the billiard lies whileθG and
φG denote a point on what is called the dual sphere. This is illustrated in figure 1. Since on the
sphere the angle between lines is equal to the distance between the corresponding dual points
the direct problem we are considering is isomorphic to the dual billiard map [6]. In other
words, the dynamics of a particle moving along an oriented geodesic labelled by(θG, φG) and
suffering specular reflections at the boundaries can be alternatively expressed as a mapT acting
on the point(θG, φG) on the dual sphere. This map reflects(θG, φG) in the point of tangency
to the dual billiard, defined as the set of points dual to tangent lines to the direct billiard. It
can be easily seen that the area element dA = sinθ dθ dφ is preserved by this bounce mapT .
Thus cosθG andφG are canonical coordinates on the dual sphere. They provide a convenient
reduced description of the classical motion alternative to the Birkhoff coordinates. In the plane
the equivalent construction has been extensively studied, but it leads to two different dynamical
systems, one for the direct billiard and one for its dual ([6] and references therein).

3. Polygonal billiards

The simplest systems on the sphere one can think of are convex billiards whose boundary
consists of meridians (β = const) and parallels (α = const). These are not polygons since
parallels (except for the equator) are not geodesics. It is easy to see that in reflections on
meridians and parallels, the quantity sinθG is conserved. Therefore, the dynamics for these
billiards is integrable. Depending on the initial conditions we get periodic and non-periodic
orbits, giving rise to rational and irrational tori in phase space.

We now concentrate on polygonal billiards, i.e. systems enclosed by arcs of geodesics.
Each of these arcs is a point on the dual sphere and, therefore, the dual billiard is also a polygon
and the two dynamics are isomorphic.
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For simplicity we will restrict our discussion to the case of equilateral triangles. While
flat equilateral triangles are integrable, spherical equilateral triangles present a rich variety of
possibilities depending on their size. This is due to the existence on the sphere of a definite
relation between the size and the shape of the triangle. The inner angleω can take any value in
the interval [π3 , π ], and the area (that can be related to the total curvature) is:A = R2(3ω−π).

For a triangle centred on the north pole the three sides will be specified by the vectors
(θB, φBi ) which label the intersecting geodesics. Here,φBi = (i − 1) 2π

3 with i = 1, 2, 3, and
the angleθB is related to the inner angleω through

sinθB = cosω2
cosπ6

. (3)

Points(θB, φBi ) define the dual triangle. VertexVi , defined as the intersection of geodesics
(i − 1) andi, will be located at(αV , βVi ), where(αV , βVi ) denote coordinates on the physical
sphere given by

tanαV = 2

tanθB
(4)

and

βVi = φBi +
2π

3
. (5)

It will be useful in the following to introduce for each vertexVi the curveCi , the locus of the
points(θ, φ) specifying all the geodesics passing byVi . Its equation reads

tanθi = − cotαV

cos(φi − βVi )
. (6)

It follows from equation (6) that curveCi is itself a geodesic on the dual sphere labelled
by (αV , βVi ). Note that this is not true in general but rather a consequence of the metric of
our problem that will play an important role when understanding the structure of phase space.
Once we have defined the discontinuity curvesCi it is easy to see that a point(θ, φ) corresponds
to a geodesic entering (exiting) sidei if: θi(φ) 6 θ 6 θi+1(φ) (θi+1(φ) 6 θ 6 θi(φ)).

The area-preserving mappingT can be written explicitly as an orthogonal matrix acting

on the unit vector

( sinθ cosφ
sinθ sinφ

cosθ

)
as

T = Ti =
( cosφBi − sinφBi 0

sinφBi cosφBi 0
0 0 1

)
·
(− cos 2θB 0 sin 2θB

0 −1 0
sin 2θB 0 cos 2θB

)

·
( cosφBi sinφBi 0
− sinφBi cosφBi 0

0 0 1

)
(7)

for θi(φ) 6 θ 6 θi+1(φ), that is for a geodesic entering sidei or, alternatively, for a point
(θ, φ) reflecting in(θB, φBi ).

Since the problem is symmetric under rotations in2π
3 around the centre of the triangles it

will be useful to define the operatorsT + andT − as

T ± =
 cos2π

3 ± sin 2π
3 0

∓ sin 2π
3 cos2π

3 0
0 0 1

 · (− cos 2θB 0 sin 2θB

0 −1 0
sin 2θB 0 cos 2θB

)
. (8)

With this definition, according to which, for example,T3T2T1 = T +T +T + andT2T1 = T +T −,
we indicate if the particle exiting from a given side hits the next or the previous side in increasing
order withi.
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Figure 2. (a) Schematic diagram of a circuit visiting three faces
of the tetrahedron, corresponding to an orbit of type [· · ·+− · · ·]
in triangle I. In (b) a circuit visiting four faces, associated to an
orbit of type [· · ·+++ · · ·] is shown.

The trajectories in the triangle will be classified according to an infinite symbol sequence
obtained by listing the sides successively hit. The code alphabet will consist of +,− signs. This
classification, as we will see, is not one to one in the sense that even infinite length sequences
do not distinguish single trajectories uniquely.

3.1. Tiling triangles

We now study the case of equilateral triangles that tile the sphere under the reflection rule.
Since the rotation group has a finite number of discrete subgroups there are only a few ways
of tessellating the sphere. Tiling triangles are such that their vertices coincide with those of a
face of a regular polyhedron. The three possible cases are the tetrahedron withω = 2π

3 , the
octahedron withω = π

2 and the icosahedron withω = 2π
5 . We will see that tiling triangles

constitute a very particular class of billiards that not only are integrable but for which only
periodic orbits are present.

To study the motion in these three particular triangles we follow the procedure presented
in [1]: every time an edge is hit, instead of reflecting the incident geodesic, we reflect the
billiard across the edge and follow the same geodesic into the replica. That is, the motion
is viewed as a unique geodesic entering and exiting copies of the original billiard. Since the
surface is compact and the billiard is tiling it is clear that only periodic orbits exist. In order to
determine their periodicity,np, we have to fold back, for each copy, the corresponding segment
of geodesic into the original billiard. When, after a certain number of these operations, the
image coincides with the original the trajectory closes. To do this we have to consider the
symmetry group of the corresponding polyhedron and the possible circuits on it, that is, which
faces are visited by the geodesic.

Triangle withω = 2π
3 . Two circuits are possible on the projected tetrahedron: one visits

three faces, corresponding to orbits of type [· · ·+− · · ·] in the triangular billiard, and the other
visits four, corresponding to orbits [· · ·+++ · · ·]. Both circuits are indicated in figure 2, where
the notation for the tetrahedron is defined. Sides are indicated witha, b, c . . . , while with
σa, σb, σc . . . we denote reflections across these sides. FaceI corresponds to the original
billiard.

The orbits of the first type correspond to following a geodesic passing through faces
I, σbI, σcσbI, σaσcσbI, . . . . The transformationσjσi is a rotationC2

3 through 4π
3 about the

line of intersection of the reflection planes. Thus the product of six reflections, corresponding to
a rotation in 4π , brings back the segment of the geodesic to its original position and orientation.
Therefore, general periodic orbits of type [· · ·+− · · ·] have periodicitynp = 6.
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There are three particular orbits of lower periodicitynp = 2. These are the ones invariant
under the rotation around three of the fourC3 axes of the tethahedron, that is, the geodesics
resulting from the intersection with the sphere of the planes orthogonal to these axes.

The orbits of type [· · ·+++ · · ·] correspond to a geodesic passing through faces
I, σbI, σcσbI , σf σcσbI, σaσf σcσbI, . . . . It can be seen that the product of three reflections
σkσjσi is a rotary-reflectionS4 about one of the binary axes joining the centres of two opposite
sides of the tetrahedron, as shown in figure 2. Since(S4)

4 = E, 12 reflections are needed in
order to recover the initial segment of geodesic in the original billiard and the periodicity of
the orbits will benp = 12. There is, finally, an orbit with periodicitynp = 3 that joins the
centres of the three sides of the triangle.

Triangle withω = π
2 . Due to the geometry of the octahedron, all the trajectories in this

triangle are of the type [· · ·+++ · · ·]. A product of three reflections is equivalent to an inversion,
transformingθG, φ in π − θ, φ + π . Since any geodesic is invariant under this operation, the
periodicity for all the orbits will benp = 3.

Triangle withω = 2π
5 . Following the same procedure we find in this case orbits of type

[· · ·+++ · · ·] which have, in general, periodicitynp = 15 (and one withnp = 3 that joins the
centres of the three sides of the triangle) and orbits of the type [· · ·++−− · · ·] with np = 12
(and three orbits with lower periodicitynp = 4).

One can also think of triangles that are not tiling in the strict sense but which, by
successive reflections on their sides, cover the sphere more than once. This is the case of
a triangle withω = 4π

5 that covers the spherical surface twice. It has periodic orbits of type
[· · ·+− · · ·] with periodicity np = 10, of type [· · ·+++ · · ·] with periodicity np = 15 and of
type [· · ·++−++−++− · · ·] with periodicitynp = 9.

3.2. Generic triangles

The entry–exit map. Let us now investigate the case of a generic triangle with an arbitrary
θB . Following [7] we will divide the available phase space in the(θ, φ)- plane in entry (or exit)
domains of the three sides. The entry (exit) domain is defined as the set of points associated
with the oriented geodesics that enter (or exit) a given side. In order to do this partition, we
use curvesCi , defined in equation (6).

In figure 3(a) we show an example of an entry–exit map. The intersections of curvesCi
andCi−1 correspond to the points associated to sidei − 1 with the two possible orientations.
Each point in the available phase space belongs to one entry and one exit domain. Each exit
domain is intersected by two entry domains.

After n iterations of the map according to equation (7) the phase space gets partitioned
into domains which are enclosed by geodesics, since the images by reflection of the separating
curvesCi are also geodesics. Each domain can be labelled by a sequence ofn symbols denoting
then sides successively hit by the trajectories inside this domain.

The only general rule limiting the possible sequences is that a side cannot be hit twice
consecutively. But it is clear that for each particular triangle the existence or absence of a region
associated with a given sequence is determined by the geometry, in this case, the inner angle
ω. For example the domain corresponding to an infinite periodic sequence of type [· · ·+− · · ·]
exists only in triangles with angleω > π

2 .
Figure 3(b) shows the partition of phase space after two iterations of the map. As long

as the number of iterations remains finite the different allowed domains are bounded by arcs
of geodesics and therefore polygons of increasing complexity. When a given sequence ofnp
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Figure 3. (a) Entry–exit map for a triangle withθB = 0.7. (b) Phase space after two iterations
become partitioned in domains corresponding to orbits of type [++] ([−−]) and of type [+−] ([−+]).
(c) The domains corresponding to orbits [· · ·+− · · ·] (1), [· · ·+++ · · ·] (2) and [· · ·++++−−−− · · ·]
(3) after infinite iterations.

symbols is repeated periodically an infinite number of times the resulting set of trajectories
is a chain ofnp elliptic islands bounded by a smooth curve which is the limit of the above-
mentioned polygons. Short repeated sequences lead to large and fairly regular areas, while
long sequences lead to complex island chains. Since the periodnp can be arbitrarily large, the
correspondingnp islands can be arbitrarily small and, eventually, reduce to points (for infinite
orbits). Figure 3(c) shows the domains corresponding to the repetition of some short codes.

Before studying the structure of these islands in more detail, let us have a look at the
entry–exit maps for the special case of the tiling triangles treated in the previous section. The
common feature to these particular triangles is that the corresponding separating geodesicsCi
are reflected into themselves after a few iterations. Therefore, phase space gets partitioned into
a few polygonal (in the sense that they are enclosed by a finite number of segments of geodesics)
domains corresponding to different periodic codes. Inside each domain, all orbits are periodic
with the same periodicity and we recover the result obtained in the previous section. This is
illustrated in figure 4. Generic non-tiling triangles may have domains in which all trajectories
are periodic, coexisting with the families of elliptic islands. These triangles with periodic
domains can be found by requiring the angleθB to be such that successive applications of
the bouncing matrix corresponding to a chosen sequence gives the unit matrix. For example,
requiring that(T +T +T +)n = I gives

θB = arccos
coskπ

n

cosπ6
(9)

while (T +T −)n = I fixes

θB = arcsin
cos2kπ

3n

cosπ6
(10)

wherek andn are integers.
Thus, if a triangle defined byθB and its complement, i.e., the one defined byπ

2 − θB have
inner anglesω1 andω2 which are both rational, angleθB satisfies simultaneously equations (9)
and (10) and the pair of rational angles(ω1, ω2) fulfil

cosω1 + cosω2 = − 1
2 . (11)
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Figure 4. Phase space portrait for tiling triangles. (a) Forω = π
2 curvesCi reflect into themselves.

(b) For ω = 2π
3 curvesCi reflect intoC′ (θB = π

2 ). (c) For ω = 2π
5 curvesCi reflect intoC′i

which, in turn, reflect again intoCi .

We found numerically two pairs of rational angles satisfying equation (11):(ω1 = π
2 , ω2 = 2π

3 )

and(ω1 = 2π
5 , ω2 = 4π

5 ), corresponding to the triangles analysed in the previous section.
Summarizing, we see that the entry–exit map is a useful tool to determine whether,

according to the geometry (in this simple case the inner angleω), a domain corresponding
to a given code exists or not in a given triangle. For this it is sufficient to reflect the segments
of the separating geodesicsCi enclosing the initial domain according to the chosen sequence.
The image domain after infinite iterations can be either empty, finite or reduced to a single
point, in contrast with the hyperbolic case where non-empty domains associated to a code are
always reduced to a single point. Finite domains are in general bounded by smooth curves,
resulting from the intersection of an infinite number of geodesics. In generic triangles some
particular codes are associated to polygonal domains enclosed by a finite number of geodesics.

The structure of phase space.In order to understand the detailed structure of phase space in
the generic case we now follow individual trajectories. A phase space plot is shown in figure 5
for different initial conditions. It reminds one very much of the stable regime of a sawtooth
map [8]. At the centre of each island, belonging to a set ofnp islands, sits a periodic orbit of
periodnp surrounded by a family of nested invariant curves. These correspond to open orbits
having the same dynamics as the central periodic orbit, i.e., they follow the same periodic
sequence or reflections. Therefore, a given code does not specify a single trajectory, as in the
hyperbolic case, but an entire family of orbits. The size of the islands decreases asnp increases
and phase space takes a fractal structure.

The existence of these islands is a consequence of the focusing mechanism on the spherical
surface. The fact that two geodesics on the sphere intersecting atθint , φint cross again at
π − θint , φint + π reflects on the structure of the orbits. To illustrate this we consider a
periodic orbit with initial conditions(sp.o., pp.o.‖ ) expressed in Birkhoff coordinates and an
open trajectory close to it. If the initial conditions are close enough to the ones of the periodic
orbit the particle on the open trajectory will follow the sequence of the periodic orbit and, after
a period, end at a points on the boundary that is shifted with respect to the pointsp.o.. The
positions as a function of the number of period iterations is plotted in figure 6 for a given
orbit in a curved and a flat triangle of equal area. In the flat billiard the shifts− sp.o. increases
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Figure 5. Phase space plot for a triangle withθB = 0.7. 20 orbits are shown, each iterated 1000
times.

linearly, in such a way that, after a certain number of iterations, the vertex will eventually
be reached and the original sequence broken. In the spherical case the shift is an oscillatory
function of the number of iterations. If the amplitude of oscillation is small enough the corner
is never reached: the pendulating motion lasts forever and the particle keeps repeating the
original symbolic sequence but never retracing itself exactly. As long as the concentric curves
do not become tangent to curvesCi , that act as separatrices, the open trajectories have the same
code as the central periodic orbit. The corresponding transformation is a product of a string
of orthogonal matricesTi . The resulting 3× 3 matrix is itself orthogonal and therefore has
an eigenvalue 1, corresponding to preservation of the norm, and a pair of complex conjugate
phases e±i�. Thus, the motion inside an island is labelled by a code and is everywhere elliptic
with the same rotation angle�. This is clearly displayed in figure 5. The only mechanism
to distinguish the evolution of initially close trajectories is the intersection with curvesCi . In
fact, when the outer curve becomes tangent toCi , the original sequence is broken and a new
and more complex sequence appears, corresponding to a new chain of islands.

This is an example of a piecewise linear discontinous map. Its general features present
some similarities with the polygonal dual map in the plane. In both cases the structure of
phase space is determined by the set of curves that will eventually feel the discontinuity of the
map: in our case curvesCi and their successive reflections. These draw a complicated pattern,
enclosing finite domains that might reduce to single points in the case of infinite orbits. The
main difference between both cases is that in the plane these domains are polygonal and all
orbits in them are periodic, while in the sphere they consist of a single central periodic orbit
and a set of concentric open orbits sharing the same dynamics. Within these open domains that
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Figure 6. Position on the boundarys plotted
as a function of the number of iterations for
an open trajectory in the neighbourhood of
a periodic orbit of periodnp = 3, starting
at sp.o.. Dots correspond to the curved
triangle, diamonds to the planar triangle of
equal area. Horizontal lines indicate the
edges.

correspond to a finite allowed symbolic sequence the motion is integrable, with rotation angle
given by the eigenvalue of the correponding orthogonal matrix. Some properties of the set of
infinite orbits have been investigated for planar polygons [6,9] and need further investigation
in the spherical case.

Small triangles. If we go to the limit of small triangles the total curvature can be seen as
a perturbation from the integrable case of flat equilateral triangles. This limit corresponds to
takingω→ π

3 , (that isθB = π
2 − ε). This restricts the available space phase to geodesics with

θG close toπ2 . For the segments inside the billiard, that isβ in a small interval aroundφG +π ,
the equation of the geodesics reads

α = θ0

cos(β − φ0)
(12)

whereθ0 = π
2 − θG = ε andφ0 = φG + π , that is, the equation of a straight line in polar

coordinates in the plane.
The reflection across a side of the planar triangle is given by

α′ = −α + 2θ0 cos(β − φ0) (13)

β ′ = −β + 2φ0 (14)

which can also be obtained by expanding equation (7) to first order inε. All trajectories lie
on tori-filling phase space. In figure 7(a) several rational and irrational tori are shown. Under
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Figure 7. (a) Some tori in a planar triangle. Circles correspond to a rational torus withnp = 3,
squares tonp = 34 and the straight line to an irrational torus. (b) For a curved triangle with
ω = 10 001π

30 000 open trajectories develop around the elliptic points.

perturbation, these rational tori are destroyed and the fixed points that survive perturbation are
all stable as a consequence of the focusing mechanism due to the positive curvature. Around
each stable point of the periodic orbit,np, a family of invariant curves, corresponding to open
trajectories, develops. This is shown in figure 7(b).

Note that due to the isomorphism of the direct and dual system on the sphere we could also
consider as an unperturbed system the planar triangular dual billiard, which is also integrable
and exhibits only periodic orbits.

4. Conclusions

This work was a first step in the understanding of the classical dynamics in billiards on a
spherical surface. We only considered polygonal billiards and, more specifically, equilateral
rational and irrational triangles. The main conclusion is that all periodic orbits are stable and
they are surrounded by open regions of elliptic type characterized by an infinite repeating code.
This is a consequence of the focusing mechanism and constitutes a substantial difference with
respect to the planar and hyperbolic cases where each infinite code is associated to a single
orbit. The map has a regular but very complex structure. The phase space is covered by chains
of elliptic islands, whose multiplicity increases and size decreases with the period, infinite
orbits corresponding to unstable points. The structure of the set of orbits with infinite non-
repeating codes remains to be explored. Tiling billiards constitute a very special system where
only periodic orbits are present. We have also studied non-equilateral triangles and the general
structure of phase space is very similar. We do expect differences if the boundaries are not
geodesics: in particular, the motion is likely to develop large chaotic regions. Conditions for
hyperbolicity of billiards on surfaces of constant curvature have been recently studied in [10].
This question together with the issues of quantization will be addressed in the future.
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